Обзор технологий монокристаллические или поликристаллические солнечные батареи, что лучше ?

Содержание

Монокристаллы

Преимуществом монокристаллов является то, что они изготавливаются из сверхчистого кремния. Благодаря своей чистоте, этот материал широко используют не только в конструкции солнечных панелей, но и в радиоэлектронике. Технология создания монокристаллов довольно сложная, так как конструктивно они представляют собой стержни, которые растут из кремниевого сплава, медленно вытягиваясь. Далее их разрезают на части, толщина которых не превышает 0,4 миллиметра. Готовые пластины подвергают специальной обработке, в результате которой из них получаются фотоэлектрические элементы, необходимые для серийного изготовления солнечных панелей с КПД 17-22%.

Поликристаллы

Поликристаллы могут иметь искусственное и естественное происхождение. К ним можно отнести материалы такого типа, как сплавы, минералы, керамика и различные металлы. Благодаря
кристаллическим зернам в структуре поликристаллов, они получили свои уникальные свойства. Чтобы получить данный материал искусственным путем, по специальной технологии спекают кристаллические порошки. В результате происходит полиморфное превращение материала в поликристаллы. Что касается солнечных батарей, то для изготовления поликристаллов для них используется кремниевый сплав. Его нагревают до определенной температуры и дают медленно остывать. Следуя этой технологии, можно получить поликристаллический кремний, отлично зарекомендовавший себя в роли основного материала для создания солнечных батарей.

Данная технология менее трудоемкая, в отличие от метода получения монокристаллов. Это объясняется тем, что вытягивание кристаллов кремния происходит естественным способом во время охлаждения сплава без применения дополнительных обработок. В результате, себестоимость их изготовления ниже, чем у монокристаллов. Это не могло не сказаться положительно на стоимости солнечных батарей. Из недостатков данного материала можно отметить только наличие областей в структуре с зернистыми границами, что ухудшает качество поликристаллов.

Основные отличия монокристаллических и поликристаллических солнечных батарей

Главное отличие солнечных батарей заключается в их эффективности. Монокристаллические выигрывают в этом вопросе, так как их КПД может достигать 22% за счет чистоты материала, используемого для изготовления монокристаллов. У поликристаллических солнечных панелей максимальный коэффициент полезного действия составляет не более 18%. Это отражается на габаритах батарей, так как чем выше их КПД, тем меньше площади они занимают для выработки электроэнергии определенной мощности. Что касается внешнего вида, то солнечные батареи на монокристаллах имеют закругленные, а поликристаллические аналоги правильные прямые углы. Цвет каждой панели не однороден, как и сам поликристаллический кремний, имеющий инородные примеси.

Если сравнивать ценовые показатели данных изделий, то монокристаллические солнечные батареи примерно на 10% дороже из-за более сложной технологии изготовления. Но учитывая, что и КПД у них выше на несколько процентов, разница в цене довольно быстро окупается. Тем не менее, согласно статистике, более доступные поликристаллические солнечные панели лидируют по количеству продаж на мировом рынке. Более доступная цена и простота изготовления сыграли в этом вопросе не последнюю роль. Что бы вы не выбрали в итоге, главное, что моно- и поликристаллы одинаково хорошо справляются со своей задачей при работе в солнечных панелях.

Поликристаллические и монокристаллические панели. Какому типу оборудования отдать свое предпочтение.

На сегодняшний день самыми распространенными стали фотоэлементы на основе ячеек из поли или монокристаллов. Вопрос выбора обычно стоит между двумя этими типами систем. Несмотря на то что монокристаллические и поликристаллические солнечные панели действуют по одному принципу, эти элементы имеют достаточно много различий между собой. Отметим, что говоря о различиях, имеется в виду, что не только разница в технических характеристиках и показателях эффективности, существуют различия и в поведении оборудования в различных широтах, при отличающихся погодных условиях. Итак, чтобы помочь выбрать какие все-таки типы солнечных фотоэлементов моно или поликристаллические, понадобятся именно в вашем случае, изучим суть вопроса и особенности производства.

Сравнение фотоэлектрических модулей

Кристаллический кремний и его свойства

Сегодня подавляющее большинство оборудования преобразующего энергию солнечных лучей в электрический ток в основе своего производства имеет кремний. К настоящему времени на рынке подобной продукции более 90% занимают солнечные панели, изготовленные на основе монокристаллического кремния. Этот вид солнечных энергетических установок в первую очередь предназначен к использованию в частном жилом фонде. Используемый в производстве солнечных модулей кремний имеет различные степени очистки. Градация данного параметра, присваемого качеству кремния, указывает на то, как в структуре его кристаллической решетки упорядочены молекулы. В данном случае чем качественней и более технически продвинуто производство кремния, тем лучше будет упорядочена молекулярная структура продукции, а значит, и коэффициент полезного действия создаваемых на его основе солнечных панелей. В основном при ссылке на этот фактор солнечные энергетические установки и делятся на различные виды и типы.

Кристаллический кремний - сырье для производства электроники

Кристаллический кремний

Конечно, добиться в промышленных масштабах отличной упорядоченности молекулярной структуры решетки кремния можно только на производствах с оборудованием и процессами технологий на высочайшем уровне, это очень затратный и дорогостоящий процесс. Из этого можно сделать вывод, что степень очистки, который проходит кремний, не имеет определяющего значения. Более весомыми параметрами, выступающими на переднем плане, в достигаемой производительности солнечных элементов и определения выбора при приобретении как раз выступает предлагаемая эффективность использования полезной площади оборудования, ее общая экономическая результативность. Теперь, исходя из описанного выше можно прийти к выводам, что кристаллический кремний выступает основным действующим элементом всех производимых сегодня солнечных элементов, и делятся они на монокристаллические и поликристаллические.

Кристалл кремния в процессе выращивания на производстве

Выращивание кристалла кремния

Поликристаллические солнечные модули

Солнечные батареи, производимые на основе поликристаллических кремниевых элементов, созданы и выпущены на рынок сравнительно давно. Впервые они были предложены потребителю еще в 1981 году. В процессе их производства нет необходимости задействовать сложные и дорогостоящие высокотехнологические процессы. Производством не ставиться цель упорядочивания молекулярной структуры решетки кремния. Исходное сырье просто плавят и заливают в готовые формы для отливки. Далее, остывшие блоки делят на пластины стандартных размеров имеющие правильную форму квадрата. В результате на выходе мы имеем относительно недорогие и простые в использовании поликристаллические модули.

Производство поликристаллических солнечных панелей

Поликристаллическая солнечная панель

В чем же достоинство оборудования на основе поликристаллических элементов?

  • Приобретение и установка такого оборудования не повлечет вашего разорения. В результате остановки выбора на этом типе оборудования вы значительно сэкономите, так как в процессе производства довольно серьезно снижаются расходы материалов, дешевле обходится дальнейшая переработка и утилизация;
  • Технологический процесс отличается намного меньшим в процентном соотношении количеством брака.

Солнечная панель из поликристаллического кремния

Пластины из поликристаллического кремния

Однако одновременно с этими неоспоримыми достоинствами поликристаллические фотоэлементы имеют и ряд некоторых недостатков:

  • Поликристаллические солнечные модули хуже противостоят влиянию повышенных температур. Их разница в сравнении с аналогами на основе монокристаллов состоит в том, что влияние высоких температур разрушительно влияет на сроки службы всей системы, снижает показатели мощности. Но в связи с тем, что все-таки влияние на функциональные характеристики не столь существенно, особенно заострять на этом внимание нет необходимости;
  • Следующий недостаток — это сниженная эффективность использования полезной площади, используемой в солнечной энергетической системе поликристаллических фотоэлементов, значительно ниже, чем у аналогичной продукции на моно кристаллах. Чтобы получить на выходе те же показатели мощности придется использовать большее количество панелей;
  • Среди существенных недостатков выступают показатели производительности. В сравнении с батареями на основе монокристаллов, они значительно ниже. В данном случае цифры составляют от 13 до 18 процентов;
  • Общий внешний вид конструкции. Поликристаллические панели имеют неоднородную поверхность. Однако если в процессе монтажа добавить специальные покрытия, этот недостаток совсем не будет заметен внешне.

Монокристаллические солнечные модули

Отличительной чертой, которой обладают монокристаллические батареи, где в основе производства использовался кремний, состоящий из монокристаллических молекулярных решеток – это их выраженная однородность расцветки рабочей пластины, а также всего внешнего вида. В результате обладания данными параметрами, определяются габариты зерен монокристаллического кремния. Непосредственно на производстве при использовании технологического сырья выращивается слиток монокристаллического кремния. Он имеет в своей основе довольно серьезные характеристики качества частоты и ровной структуры кристаллической решетки. Изготовление фотоэлементов, которые собирают в монокристаллические модули, осуществляется с применением слитков кремния, имеющих цилиндрическую форму. В процессе производства сам слиток обрабатывается со всех концов, что значительно повышает технические характеристики результативности работы конечного оборудования и его эффективность. Эта особенность производства влияет на окончательный внешний вид сборки монокристаллов – в результате все составляющие становятся совершенно одинаковыми с виду. В результате мы имеем высокоэффективные, работающие солнечные модули. Получается, что основное отличие во внешнем виде поликристаллических солнечных батарей от их аналогов где использовался монокристаллический элемент, будет в форме пластины элемента. Монокристаллические пластины в результате производства получают форму квадрата.

Заготовка из моноклисталлического кремния

Кремниивая заготовка

Монокристаллические солнечные модули, в чем их преимущество?

  • В связи с качественным производством исходного элемента (высокой структурированностью молекулярной решетки монокристаллов), эти элементы обладают очень высоким коэффициентом полезного действия. Собранные по такому принципу солнечные энергетические установки на выходе обладают производительностью до двадцати процентов;
  • Для получения равнозначной мощности необходима установка, размеры которой будут значительно меньшими по сравнению с аналогичными видами фотоэлементов, произведенных по менее качественным технологиям. Это означает, что если вам надо получить установку мощностью производства электрического тока на уровне 20 ватт, будет нужно приобрести и установить кремниевые батареи меньших размеров;
  • И еще одно очень важное преимущество — это, конечно же, высокая долговечность эксплуатации такого оборудования. Монокристаллические пластины самые долговечные среди всего предлагаемого на рынке оборудования. При правильной установке и эксплуатации эти пластины верно прослужат вам по своему назначению не менее четверти века.

Пластины монокристаллических солнечных модулей

Монокристаллические солнечные модули

Монокристаллические солнечные фотоэлементы, в чем их недостатки в сравнении с другими типами фотоэлементов?

  • В связи с особенностями производства исходного сырья, эти панели имеют вполне приличную стоимость покупки. В том случае если финансовый вопрос для вас имеет первостепенное значение, а коэффициент эффективности на вспомогательных ролях, то, конечно же, лучше выбрать для себя другие типы установок, например, поликристаллические;
  • Значительную потерю производительности панели, а соответственно и всей энергетической установки, может повлечь даже незначительное загрязнение рабочей поверхности, в том числе и затемнение от листьев дерева или других внешних факторов. В целях нивелирования данного существенного недостатка, в цепочке с устанавливаемым оборудованием будет целесообразным установка микроинверторов. Их применение будет уравнивать функционирование всей системы вследствие возникновения ситуации, когда модули неравномерно освещаются.

Что такое монокристаллическая солнечная батарея?

Монокристаллическая солнечная батарея представляет собой срез с единого кристалла кремния, полностью однородного и монолитного. Этот вид конструкции демонстрирует максимальную эффективность и значительно превосходит все аналоги по характеристикам, стабильности и долговечности.

Внешне их легко отличить от альтернативных конструкций — панели имеют черный цвет и по всей площади оснащены металлическими пластинками, расположенными в узловых точках решетки. Монокристаллические элементы имеют срезанные углы, поскольку изготовлены из заготовки цилиндрической формы. Если не устанавливать защитные элементы, между отдельными панелями будет накапливаться пыль, попадать и замерзать вода, что приведет к разрушению модуля.

Изготовление

Главное, чем отличаются монокристаллы от поликристаллов —это сложность в изготовлении. Монокристалл долго выращивается и требует для этого создания определенных условий.

  • Используется небольшой кусочек чистого кремния, который помещают в расплав.
  • Он становится основой для кристалла, который начинает расти, увеличиваться в размерах.
  • Когда его величина достигает заданных параметров, процесс останавливают, а полученный цилиндр нарезают на тонкие пластинки. Это и есть заготовки для монокристаллических солнечных панелей.
  • Затем их шлифуют, наносят защитное покрытие и устанавливают контактные проводники.
  • Последний этап — сборка отдельных фотоэлектрических элементов в солнечные модули с заданными параметрами.

Преимущества

К преимуществам монокристаллических панелей следует отнести:

  • эффективность, превышающая показатели всех остальных видов солнечных панелей. Она достигается за счет структурированности кремния, позволяющего добиться КПД в 17-22 %
  • малая площадь панелей по сравнению с другими конструкциями
  • долговечность монокристаллических панелей составляет до 25 лет, что не способны продемонстрировать альтернативные разновидности
  • способность работать в условиях низких температур
  • панели демонстрируют довольно высокую производительность даже в условиях слабой освещенности

Преимущества, которые показывают солнечные панели монокристаллические перед другими конструкциями, в значительной степени нивелируются их отрицательными качествами.

Недостатки

К недостаткам монокристаллических модулей относят:

  • высокая стоимость. Процесс производства занимает много времени, требует создания специфических условий роста кристаллов. Кроме того, приходится поддерживать эти условия в неизменном состоянии в течение длительного времени. Это увеличивает себестоимость конечной продукции, и снизить ее производителям пока не удается
  • чувствительность панелей к появлению загрязнений, затенения части поверхности. Это отрицательно воздействует на производительность всей сборки модулей, но может быть устранено установкой микроинверторов. Они выравнивают режим работы всех модулей, но еще больше увеличивают суммарную стоимость солнечных батарей

Основным недостатком, ограничивающим использование монокристаллов, является чрезмерно высокая цена. Пользователи, подсчитав сумму вложений, предпочитают более дешевые поликристаллы.

Стоимость

Цена монокристаллических солнечных панелей малой мощности мало отличается от поликристаллических образцов. Например, 30-ваттный модуль стоит 2100 руб. против 1700 руб. для поликристаллической панели той же мощности.

Однако, с увеличением производительности и размера панели разница в стоимости заметно увеличивается. Учитывая необходимость приобретать несколько панелей, ценовое преимущество поликристаллов возрастает. При этом, преимущество монокристаллов по всем позициям никем не оспаривается, единственным критерием становится ценовой фактор.

Что такое поликристаллическая батарея

Поликристаллические солнечные батареи изготавливаются по другой технологии. Она значительно проще, что делает методику более предпочтительной как для производителей, так и пользователей. Несколько упрощенно, технологический процесс состоит из нескольких этапов:

  • нагрев кремния до точки плавления
  • розлив полученного расплава по формам
  • нарезка остывших брикетов на тонкие пластинки
  • шлифовка, нанесение токопроводящих дорожек
  • нанесение слоя защиты

Отсутствие длительного процесса естественного выращивания кристалла значительно ускоряет и упрощает процесс изготовления, но качество панелей получается намного ниже. Вся площадь фотоэлемента разделена на мельчайшие частицы. ориентированы в разные стороны. От этого процесс образования электронов при попадании фотонов света делается менее интенсивным.

КПД, который способны продемонстрировать поликристаллические панели, не превышает 12-18 %, что заметно ниже показателя монокристаллических компонентов.

Отличить внешне, монокристалл или поликристалл является базовым компонентом, очень легко. Если первый имеет черный цвет, то модули второго типа синие и не оснащены никакими дополнительными элементами на лицевой поверхности. В зависимости от производителя и особенностей технологии оттенок может быть более светлым или темным, но он всегда синий.

Преимущества

Если возникает вопрос — монокристаллические и поликристаллические солнечные модули, что лучше — надо детально рассмотреть их достоинства. Преимуществами поликристаллов считают:

  • более быстрый и экономичный способ изготовления
  • отставание по всем параметрам от монокристаллов не слишком значительное
  • стоимость поликристаллических модулей примерно на 20 % ниже, что при покупке больших партий создает большую экономию

Необходимо учитывать, что у некоторых производителей (например, у одного из лидеров мирового рынка компании Trina Solar) более высокие показатели демонстрируют солнечные панели поликристаллические. Они превосходят монокристаллы на 2,6 % по производительности, хотя по другим параметрам они примерно равны. Однако, у других производителей такого первенства не наблюдается.

Недостатки

К недостатками поликристаллических панелей принято относить:

  • КПД этих конструкций составляет всего 12-18 %
  • уровень производительности ниже
  • долговечность поликристаллов примерно такая же, но со временем показатель производительности заметно падает
  • размер панелей на 20 % больше, чем у монокристаллических модулей той же производительности. Это играет важную роль при необходимости разместить их в условиях ограниченного пространства — на крыше или иной поверхности

Необходимо учитывать, что недостатки поликристаллических панелей не настолько существенны, чтобы пользователи в массовом порядке отказались от их применения. Наоборот, спрос на эти конструкции гораздо выше, чем на все альтернативные разновидности. Он вызван оптимальным на сегодняшний день соотношением стоимости и параметров модулей.

Стоимость

Цены на поликристаллические солнечные батареи примерно на 10-15 % ниже, чем на монокристаллические модули. Это позволяет получить заметную экономию при создании полнофункциональной СЭС с набором приборов и большим количеством панелей.

Учитывая, что долговечность поликристаллических солнечных батарей составляет около 30 лет (хотя достоверной статистики на этот счет пока никто не собрал), общий порядок цен способствует однозначному выбору этих разновидностей. Кроме того, периодически панели приходится менять, и в этом вопросе более доступная стоимость определяет выбор пользователей. 100-ваттная панель стоит около 6000 руб, а 300-ваттная — около 18000 руб. Порядок цен зависит от производителя, у некоторых компаний ценовые запросы гораздо выше.

Выводы

В заключение хотелось бы добавить, что, прежде чем выбрать вид солнечных модулей необходимых вам, для начала определитесь, в каких условиях будете их использовать, где будете устанавливать оборудование, каким бюджетом вы располагаете. Самой солнечной электрической системе неважно, какой именно тип батареи будет вырабатывать ток, основной фактор здесь – это показатели получаемой на выходе мощности и силы напряжения. Добиться нужного значения можно используя оба вида панелей, разница будет лишь в том, какую для этого придется задействовать площадь поверхности. И поэтому, если вас не особо волнует объем занятой площади, то без проблем приобретайте батареи на основе поликристаллов с немного большей площадью фотоэлементов. На приобретение этого оборудование вы потратите значительно меньше средств.

Готовая солнечная панель из монокристаллического кремния

Солнечная панель

Какие факторы влияют на эффективность панелей

Максимальный показатель эффективности достигается солнечными батареями только при соблюдении определенных условий. Что сюда входит?

Угол наклона панелей

Когда солнечные лучи попадают на панель под углом 90 градусов, то есть перпендикулярно, это позволяет получить наибольший процент выработки электроэнергии. Очень важно следить за углом наклона и выставлять соответствующим образом, согласно рекомендациям специалистов, хотя бы раз в сезон. Есть солнечные панели, которые оснащены функцией автоматически регулировки и слежением за солнечными лучами, однако такие конструкции не из дешевых.

Регулярное очищение поверхности

Грязь, пыль, снег засоряют фотоэлементы и не дают им с высокой эффективностью поглощать солнечный свет. Чем чище поверхность, тем больше электроэнергии вы получите. Протирать солнечные батареи необходимо несколько раз в сезон, а зимой регулярно очищать от снега и наледи.

Погодные условия

От погоды также многое зависит. Например, при пасмурной погоде эффективность солнечных батарей снижается до 5 раз, так как плотность солнечного излучения падает. В дождливые и снежные дни батареи и вовсе могут ничего не вырабатывать, так как результат напрямую зависит от того, насколько ярко светит солнце.

Температура

Утверждение, чем жарче на улице, тем больше будет производительность солнечных панелей не верное. Главное – это показатель солнечной радиации и угол попадания лучей на панель. Больше того, когда модуль от солнечного света сильно перегревается, а такая температура может доходить и до 80 градусов, эффективность работы панели снижается из-за сильного накала. Поэтому батарея сможет дать больше в зимний солнечный день, чем в летний зной. Чтобы снизить температуру модулей при нагреве, желательно оставлять между ними небольшое пространство, чтобы панели охлаждались от потока воздушных масс.

Отсутствие тени

При установке солнечных панелей следите, чтобы на протяжении дня на них не падала тень. То же самое касается деревьев, других построек и конструкций, которые могут заслонять солнечную станцию и тем самым снижать эффективность. Специалисты советуют устанавливать панели на южной стороне.

Таким образом, несоблюдение правил может привести к сильному изменению показателя эффективности работы солнечной панели и отразится на получении необходимого объема электроэнергии. Причем данный показатель может снизиться до 8 раз. Здесь очень важно соблюдать не каждый пункт в отдельности, а все в комплексе. Только так можно сохранить максимальную эффективность работы, заложенную производителем.

Что такое КПД

КПД – это коэффициент полезного действия. В работе солнечных батарей этот показатель измеряется в процентах и означает производительность одной панели – количество электроэнергии при стопроцентном использовании солнечного света. Значение эффективности указывается в паспорте солнечной батареи. Его также можно рассчитать самостоятельно: мощность электроэнергии разделить на мощность солнечной энергии, которая приходится на определенный размер площади панели.

В показатель чистой выработки уже включены энергозатраты, которые будут направлены на обеспечение работы других технических устройств, без которых получить ток от солнечной батареи и использовать его в бытовых целях не получится.

КПД – это экономическая обоснованность установки солнечных батарей. Его средний показатель находится в пределах от 12 до 25%. Наибольшее значение показывают кремниевые панели – от 17 до 22% при условии качественного сырья и правильной эксплуатации. Также не стоит рассчитывать на высокой процент эффективности, если погодные условия тому не соответствуют.

Солнечным фотоэлектрическим батареям нужен свет, а не тепло


Многие думают, что в жаркий солнечный день солнечные батареи вырабатывают больше энергии, чем в морозный солнечный день. Это не так. Для выработки электричества солнечных батареям нужен свет, а вот температура наоборот снижает их эффективность. Поэтому яркое солнце и низкая температура — идеальные условия для солнечных батарей. Конечно, в пасмурную погоду панели будут вырабатывать меньше света чем обычно, но в целом редко бывают случаи, когда в правильно рассчитанной системе аккумуляторная батарея на протяжении дня не успевает заряжаться. Зато в солнечную морозную погоду батареи будут очень эффективны. 

Чем ниже солнце над горизонтом, тем меньше энергии достигает солнечных панелей, т.к. солнечным лучам нужно пройти толщу атмосферы. Зимой Солнце всегда низко, а дни короче, поэтому энергии от него можно получить гораздо меньше, чем летом.  Зимой очень важен уровень наклона солнечных батарей. Часто выставляется универсальный угол, на целый год. Про исследование влияния угла наклона на эффективность работы солнечных батарей см. статью «Оптимальный угол установки солнечной батареи для максимальной выработки энергии в северных широтах«

Продуктивность солнечных панелей зимой может падать от 2 до 8 раз в зависимости от региона, чем южнее, тем продуктивность выше. Поэтому чем больше площадь самих батарей, тем больше энергии они смогут собирать. Если летом для работы холодильника, компьютера и освещения дома нужен 1 кВт энергии (это 4 панели по 250 ватт), то зимой для надежности лучше запастись 2 кВт.

Насколько меньше? Расчёты показывают, что система, ориентированная строго на юг и производящая около 300 кВт*ч в июне и июле, будет производить около 50-60 кВт*ч в декабре и январе, т.е. примерно в 5-6 раз меньше, чем летом. Это при условии, что солнечные панели очищены от снега. Если ваши панели будут занесены снегом, то солнечная батарея вообще не будет вырабатывать электроэнергию. Для более точной оценки выработки энергии солнечной фотоэлектрической системы при разных углах наклона можно использовать калькулятор PVWatts на сайте NREL. Калькулятор хорош тем, что рассчитывает выработку энергии с учетом потерь на загрязнение модулей, их нагрев, потерь в проводах, инверторе и проч.

Ниже пример расчёта для Самары для солнечной электростанции мощностью 1 кВт.


Пример расчета выработки энергии для солнечной фотоэлектрической станции мощностью 1 кВт, при угле наклона панелей 38 градусов, потерях в системе 15% и стоимости электроэнергии 5 руб/кВт*ч.

Работают ли солнечные коллекторы зимой?

Мы выше показали, что фотоэлектрические батареи будут производить энергию и зимой, хотя и намного меньше, чем летом. А будут ли солнечные коллекторы греть зимой воду?


Ожидаемо, что зимой мы сможем получить от солнечных коллекторов гораздо меньше тепловой энергии, чем летом. И это связано не только с меньшим приходом солнечной энергии, а также и с тем, что зимой больше потери тепла как в самом коллекторе, так и в трубах, соединяющих их с баком-аккумулятором. 

Вакуумные солнечные коллекторы в среднем могут производить до 60% тепловой энергии, которая требуется вам для горячего водоснабжения. Можно получить около 90% требуемого для ГВС количества  энергии в летние месяцы, и около 25% — зимой. Для плоских солнечных коллекторов цифра летом будет примерно такая же, но вот зимой доля энергии для ГВС от Солнца будет гораздо меньше, и связано это с бОльшими теплопотерями плоских коллекторов при низких температурах воздуха.

Для солнечных коллекторов важно следить, чтобы трубки, по которым проходит жидкость зимой не замерзала. Хотя номинально они могут нагревать воду и при -30 градусах до 10-15 градусов и дальнейший нагрев делают уже другие приборы.

Для работы в круглогодичном режиме для минимизации потерь тепла в элементах системы нужно устанавливать сплит системы с размещением бака-аккумулятора в доме. Тогда потери будут только в трубопроводах, расположенных снаружи; их нужно максимально утеплить, чтобы тепло, выработанное солнечным коллектором, дошло до бака-теплоаккумулятора.

Теплопотери через солнечный коллектор и трубопроводы — не единственная проблема при работе солнечных коллекторов зимой. В сильные морозы теплоноситель (обычно специальный «солнечный» на основе пропиленгликоля) может загустеть до такой степени, что циркуляционный насос не сможет продавить его по трубам. В нашей практике даже были случаи, когда на морозе в солнечную погоду вакуумные коллекторы закипали из-за того, что насос не мог прокачать загустевший в трубах теплоноситель. Это нужно учитывать при проектировании и эксплуатации солнечной системы теплоснабжения.

В отличие от фотоэлектрических панелей, которые на морозе работают лучше, а тепловых потерь на пути от панелей до инвертора практически нет, у солнечных тепловых систем есть потери энергии, причем они тем больше, чем холоднее.

Можно ли оптимизировать солнечные панели для работы зимой?

Зимой оптимальный угол наклона к горизонту как солнечных батарей, так и солнечных коллекторов будет больше, из-за того, что Солнце зимой более низко над горизонтом. Для того, чтобы получать максимальное количество энергии и зимой, нужно менять угол наклона солнечных батарей или коллекторов. В нашем ассортименте есть специальные монтажные конструкции для солнечных батарей, которые позволяют менять угол наклона в пределах 15-30 или 30-60 градусов. Еще больше энергии можно получить при помощи трекеров, которые следят за ходом Солнца в течение дня. Однако, большинство систем установлены с фиксированным углом наклона (особенно это относится к солнечным коллекторам, т.к. у них сложнее менять угол наклона из-за трубопроводов). Значения углов наклона для максимальной выработки энергии в различные сезоны года и в среднем за год рассматривается в статьях  Угол наклона и направление и .СБНатурные испытания оптимального угла установки

Калькулятор PVWATTS также дает интересные результаты для различных углов наклона. Считается, что оптимально устанавливать солнечные панели под углом, равным широте местности. Действительно, для более равномерного распределения выработки энергии при не очень большом снижении годовой выработки этот угол является оптимальным. Если же нужно получить максимальную генерацию энергии в течение года, то угол наклона должен быть примерно «широта местности — 15 градусов«. То есть для Московской области угол наклона для максимальной выработки равен 38-42 градуса.

Влияние снега на работу солнечных батарей

Проблемы, которые может причинить снег солнечным батареям, обычно минимальны. Однако, нужно обратить внимание на следующие моменты, если в вашем регионе снежные зимы и у вас на крыше установлены солнечные батареи:


Чистка солнечных батарей от снега — при правильной установке занимает не больше времени, чем расчистка от снега дорожек

  1. Все солнечные панели рассчитаны выдерживать определенный вес, и снеговая нагрузка обычно гораздо меньше максимально допустимой. Все солнечные панели тестируются под давлением на производстве, чтобы быть уверенным в их сроке службе и качестве. Посмотрите на характеристики солнечной панели, обычно в спецификации указывается максимальный вес, который может выдержать солнечная панель.
  2. Если снег закрывает солнечные панели, они не могут производить электричество — но для решения этой проблемы достаточно почистить солнечную батарею специальным оборудованием. Солнечным панелям нужен солнечный свет, чтобы производить электроэнергию. В большинстве случаев солнечные панели устанавливаются под определенным углом, который обеспечивает естественный сход снега с солнечных панелей. Вы можете ускорить этот процесс при помощи ручной очистки снега специальными щетками, которые не повреждают и не царапают солнечные панели.
  3. Морозная солнечная погода повышает выработку энергии солнечными батареями.  Пока светит солнце на панели, они вырабатывают электроэнергию, зимой даже лучше, чем летом. Это значит, за 1 час солнечной погоды ваши солнечные панели зимой выработают больше энергии, чем за тот же час, но летом. Общее количество энергии, конечно же, будет меньше, потому что зимой день намного короче, чем летом, и солнечных дней меньше.

Можно ли надеяться на солнечные батареи зимой?

К сожалению, солнечные батареи и коллекторы не смогут обеспечить вас достаточным количеством энергии в зимнее время. Но некоторые системы работают на удивление эффективно и зимой.

Не надо надеяться на то, что солнечные батареи или коллекторы обеспечат ваши потребности в горячей воде или отоплении, но они помогут существенно сэкономить вам на счетах за электричество. Настолько, что ваша система окупится менее, чем за 10 лет. А если вы не подключены к электросетям и используете генератор для получения электричества, то фотоэлектрическая система окупится за срок от нескольких месяцев до 2-3 лет в зависимости от стоимости топлива и ваших затрат на капитальный ремонт или замену топливного генератора.

Даже с учетом того, что зимой на большей части России приход солнечной радиации снижается, вложения в солнечную энергосистему продолжает оставаться доходным. Более того, есть регионы, где приход солнечной радиации зимой даже больше, чем летом (например, Дальний Восток). В любом случае, солнечные батареи позволяют экономить на платежах за электроэнергию круглый год. 

Заключение

Несмотря на то, что между разными типами модулей есть различия, нет однозначного ответа, какой солнечный модуль удовлетворяет всем возможным требованиям лучше всего. Тип модуля выбирается в зависимости от характеристик вашего объекта и требований к установке.

Если вы не ограничены в бюджете и хотите достичь максимального срока службы и максимальной выработки энергии за срок службы солнечной панели, и вам важна площадь, занимаемая солнечной батареей — выбирайте монокристалл. Если есть ограничения в деньгах и нет ограничений по площади установки солнечной батареи и вы не гонитесь за максимальным показателем выработки кВт*ч за срок службы солнечной панели — смело покупайте поликристаллические модули.

«Ваш Солнечный Дом» всегда поможет вам с выбором солнечных панелей. Как лидеры рынка с огромным опытом, мы всегда сможем вам подсказать, какой солнечный модуль и какая технология наиболее подходят вам для решения вашей специфической задачи.

Источники

  • https://elektro.in.ua/56-monokristallyi-iipolikristallyi-obschee-i-razlichiya
  • https://SolntsePek.ru/solnechnye-paneli/polikristallicheskie-solnechnye-paneli.html
  • https://Energo.house/sol/kakie-solnechnye-batarei-luchshe-monokristall-ili-polikristall.html
  • https://www.termico-solar.com/effektivny-li-solnechnye-paneli/
  • https://www.solarhome.ru/basics/solar/solar-winter.htm
  • https://www.solarhome.ru/basics/solar/pv/mono-or-poly-solar-panels.htm
[свернуть]
Поделиться:
Нет комментариев
×
Рекомендуем посмотреть